Birzeit University
Department of Physics
Mathematical Physics, Phys330
Fall 2020
Midterm-Exam

1. Calculate the sum of the following series:
(a) (5 points) $\sum_{n=0}^{n=N-1} \cos (n x)$
(b) (5 points) $\sum_{n=0}^{n=N-1} \sin (n x)$
(c) (5 points) $\sum_{n=0}^{n=\infty} p^{n} \cos (n x)$, where $|p|<1$
(d) (5 points) $\sum_{n=0}^{n=\infty} p^{n} \cos (n x)$, where $|p|<1$
2. (10 points) Prove the following identity:

$$
\left(\frac{i c-1}{i c+1}\right)^{i d}=e^{-2 d c o t^{-1}(c)}
$$

Both c and d are real
3. (10 points) Find the solution for the following equation:

$$
z^{3}+(3+i) z^{2}+2 z+(5+i)=0
$$

4. (15 points) The electrostatic force is a conservative force, that is the work along a closed path is zero. Which of the following electric field can represent an electrostatic electric field:

$$
\begin{array}{r}
\vec{E}=k[x y \hat{i}+2 y z \hat{j}+3 x z \hat{k}] \\
\vec{E}=k\left[y^{2} \hat{i}+\left(2 x y+z^{2}\right) \hat{j}+2 y z \hat{k}\right]
\end{array}
$$

5. (15 points) For the following Matrix

$$
M=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Find $\cos (\mathrm{M}), \sin (\mathrm{M})$
6. (10 points) Prove that the eigenvalues of Hermtian matrix are real
7. (10 points) Prove the following vector identity:

$$
\nabla(\vec{U} \cdot \vec{V})=\vec{U} \times(\nabla \times \vec{V})+(\vec{U} \cdot \nabla) \vec{V}+\vec{V} \times(\nabla \times \vec{U})+(\vec{V} \cdot \nabla) \vec{U}
$$

8. (30 points) Calculate the following integral:
(a) $\oint \vec{F} \cdot \vec{r}$ around the circle $x^{2}+y^{2}+2 x=0$ for $\vec{F}=y \hat{i}-x \hat{j}$
(b) $\iint \vec{V} \cdot \hat{n} d \sigma$ over the surface of the sphere $\left.(x-3)^{2}+(y-2)^{2}+(z-1)^{2}=9, \vec{V}=(3 x-y z) \hat{i}+\left(z^{2}-y^{2}\right) \hat{j}+\left(2 y z+x^{2}\right) \hat{k}\right)$
(c) Find the value of $\int \vec{F} \cdot d \vec{r}$ along the circle $x^{2}+y^{2}=2$ from $(-1,1)$ to $(1,1)$ for $\vec{F}=(2 x-3 y) \hat{i}+(3 x-2 y) \hat{j}$
9. (15 points) define the following coordinates system:

$$
\begin{array}{r}
x=\operatorname{acosh}(u) \cos (\nu) \\
y=\operatorname{asinh}(u) \sin (\nu) \\
z=z
\end{array}
$$

Find the curl, divergence and lapalcian in this coordinate system

